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Abstract

Intrinsically Disorder Proteins (IDPs) are a significant part of the human
proteome, and their involvement in numerous diseases is well documented.
As IDPs have no single fixed structure, they represent an exception to the
structured-protein concept, known as Anfinsen’s dogma. On the other hand,
there are Intrinsically Disorder Regions (IDRs) in some protein structures that
can be fully or partially disordered, containing highly charged amino acid
residues. Despite their unstructured regions, they are involved in critical roles
in cellular functioning.
KRas, a member of the Ras GTPase family, is one of such proteins containing a
number of IDRs known as switch regions. Mutations in wild-type KRas at the
G12 position cause loss of GTPase activity and acquire oncogenic properties
that result in tumour cell growth and cancer progression. Recently, AMG510
was one of the first KRas (G12C) inhibitors efficacious against KRas G12C
tumors. However, a recent FDA-approved drug MRTX849 is more efficacious
than AMG510 in tumour regression in KRas G12Cmutant cell lines of multiple
tumour types, especially patients with lung and colon cancer patients.
As acquired resistance to the mutant selective KRas G12C inhibitor like
AMG510 is a major concern in lung cancer, to understand different drug-
induced structural changes of KRas, this thesis work attempts to perform com-
putational studies on the G12C mutated KRas, as well as the above two drug
bound forms: AMG-510 and MRTX-849. This thesis contains four chapters as
follows: Chapter-I contains introduction to IDPs/IDRs, the structural plasticity
and the experimental and computational methods to characterise their proper-
ties. We refresh through the computational methods, in chapter-II, which we
have used to run our molecular dynamics simulations and which we have used
to extract meaningful data from our trajectories. Through our analysis of fluctu-
ation, contact and correlation map, in chapter-III, we find that MRTX is potent
in inhibiting the fluctuation of the IDR switches as compared to AMG. MRTX
forms a large number of hydrogen and a few hydrophobic interactions with
the Switch-II loop. In chapter-IV, our thorough free energy analyses and com-
parison of drug-bound and unbound forms of KRas explore all possible drug-
induced conformational states. This exploration indicates that MRTX is likely
to restrict the GDP-GTP exchange in its functional cycle, and hence, possible
this is one of the reasons that may exert high efficacy. This study also predicts
that switch-II inhibition can act as a potent target for any future drug to make
KRas-G12C inhibition operational and devoid of acquired drug-resistance.
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1 Introduction

1.1 Order-Disorder Transition: Limit of Anfinsen’s Dogma

1.1.1 A Continuum rather than Binary

According to Christian B. Anfinsen, for a small globular protein in the normal

physiological environment, the 3D native structure of it is solely determined

by the protein’s amino acid sequence [1, 2]. This hypothesis of Anfinsen, also

know as the thermodynamic hypothesis, a postulate in molecular biology is

infamously known as the Anfinsen’s Dogma. He stated that a protein folds

if these three conditions are satisfied: Uniqueness, Stability, and Kinetic

Accessibility. It basically meant that proteins once folded must acquire the

lowest accessible energy state in the free energy basin and must be unique. This

implied that proteins mostly have very stable atomic positions that fluctuate

slightly due to low-amplitude thermal perturbations.

However, it was discovered that almost all living biome on the earth consists of

a proteome that is significantly constituted by Intrinsically disordered proteins

(IDPs). These proteins, contrary to the Anfinsen’s dogma, lack well-defined

3D structures in the normal physiological environment and have hence been a

topic for active research recently. Though significant progress has been made,

but there are still many potholes needed to be filled [3, 4, 5]. Therefore, IDPs

are able to sample a huge number of dissimilar conformational states during

their biological lifetime, as compared to the proteins having fixed structures

corresponding to one global minima [6]. This is possible because, IDPs have

global energy surface with multiple shallow minima having low energy barriers

which enables the protein to rapidly visit multiple energy states in its lifetime

[7, 8]. Therefore, in ordered proteins, the folded and unfolded forms are treated

1



as binary states, whereas in IDPs it essentially dictates a continuum of states [9].

Figure 1.1: Order-Disorder Transition; adapted from Ref. [10]

A family of the IDPs constitutes of proteins where they show spatio-temporal

heterogeneity in the form that, only certain parts of the proteins are disordered

to a different degree. These fragments of disordered parts are known as foldons.

They can be of many types such as, inducible foldons, morphing inducible

foldons, semi-foldons and non-foldons [11, 12, 13, 14]. This spatio-temporal

heterogeneity enables their multifunctional ability, making different parts of

the protein to function differently under different conditions. Hence, instead

of a classical “one gene–one protein–one structure–one function” model, the

promiscuous IDPs/IDRs constitute a structure-function continuum [14, 15, 16].

1.1.2 Structural plasticity and implications

Because of the structural heterogeneity exhibited by the IDPs, they occupy the

key nodal positions in the Protein Interaction Networks (PIN) [17, 18]. PINs

being the channel system inside the cells, are essential for the coordinated func-

tioning of the cell. However, due to the ability of IDPs to promiscuously inter-

act, when overexpressed, IDPs can rewire and change the PINs adapting to the

new environmental perturbations [19].

Being major hubs in the PINs, IDPs perform a multitude of functions such as

2



signaling via cellular protein networks, splicing, embryonic differentiation and

development, and transcriptional regulation [6, 20]. The interactions exhibited

by IDPs have high specificity with low affinity which lead to rapid and spon-

taneous dissociation and, hence, termination of the downstream signal, which

allows high levels of cellular control [21, 22]. These let IDPs to function as

sensitive rheostats and switches in the PIN regulatory circuits [22, 23].

Apart from these, IDPs are involved in major cellular events such as: regulation

of cell cycle, phenotypic plasticity, stress response, and circadian rhythm [24,

25, 26, 27, 28, 29, 30]. Moreover, most IDPs can form protein-based memo-

ries that drive the development and inheritance of biological characteristics in a

prion-like way [31]. IDPs are also involved in ensuring that other proteins fold

properly. Therefore, several chaperones, heat-shock proteins (Hsp22 and αβ-e)

and stress-response proteins are IDPs in nature [32].

Due to the vast repertoire of functions IDPs execute, any dysregulation can lead

IDPs to cause pathological states [33]. Hence, in many diseases like cancer,

neurodegenerative diseases, genetic diseases, diabetes, etc. IDPs are seen to be

dysregulated [34, 35, 36].

1.1.3 Interactions of IDPs and mechanism

It has been studied that several of IDPs undergo disorder to order transition upon

binding. Once they bind to their cognate partners, they undergo the “coupled

folding and binding” phenomenon [37]. For this to happen, two mechanisms

must go simultaneously. The first one is the “induced fit” and the other one be-

ing “conformational selection” mechanism. The former one informs that IDPs

fold after associating with the target, while the latter envisages all potential con-

formations of the ensemble pre-exist among which one is selected by the lig-

3



and [38]. However, both can co-exist suggesting that the binding mechanism

of the IDPs are determined by their intrinsic secondary structure propensities

[39]. Hence, the disorder to order transition in IDPs is referred to as “template

folding”, where the partner binding to the IDP dictates the route to the product

formed, ensuring a cooperative binding [40]. However, for some of the IDPs

it has been seen that they continue to stay disordered even when bound to their

cognate partner. Such interactions have been described to be as “fuzzy com-

plexes” [41]. IDPs mainly interact with their binding partners with the help of

molecular recognition features (MORFs) and short-linearmotifs (SLiMs), in ad-

dition to low complexity sequences [42, 43]. The interactions of IDPs through

SLIMs and are particularly electrostatic in nature, either through a highly pos-

itively charges patch or a negatively charged ones [44, 45]. However, some

hydrophobic regions are also found to be interacting [46].

1.2 Experimental characterization of IDPs

Experimentally characterizing the IDPs, especially the IDR regions in the large

proteins and complexes still remains a major challenge. Since the well-known

techniques like cryo-EM and X-Ray crystallography provide only static state

images of proteins in the frozen and crystallized states, respectively, they are

not adequate to study the vast ensemble of structural heterogeneity posed by

the IDPs [47]. Therefore, the go-to techniques for the characterization of IDPs

are as follows: small-angle X-ray scattering (SAXS), dynamic light scattering

(DLS), atomic forcemicroscopy (AFM), circular dichorism (CD), single molec-

ular Förster resonance energy transfer (FRET), fluorescence, two-focus fluo-

rescence correlation spectroscopy (2f-FCS), mass spectrometry (MS), nuclear

magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR)
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and Raman spectroscopy [48, 49, 50, 51, 52, 53, 54, 55]. However, all these

experiments are able to provide only limited resolution, structure, and dynam-

ics. Here, the computational methods have come to the rescue by elucidating the

conformational ensemble to a higher degree, along with validating the experi-

mental results [56, 57]. Nevertheless, the visualisation of the whole complex

energy landscape still remains a computational challenge.

1.3 Computational aspects of IDPs

Due to the challenges faced by the experimental techniques, computational

methods such as explicit solvent, atomistic molecular dynamics simulation,

coarse-grained molecular dynamics simulations, and enhanced sampling meth-

ods are extensively used to study IDPs. Recent advancements in molecular

dynamics simulations and energy landscape visualization techniques have shed

new light on conformational dynamics and their functional implications at the

system level.

1.3.1 Molecular Dynamics Simulations

The aim of MD trajectory analysis is to capture the properties of a system as

a function of few-dimensional reaction coordinates, such as dominant kinet-

ics and structural features of transition state ensembles. Alternative strategies

for inferring suitable reaction coordinates to describe the energy landscape ex-

ist beyond the straightforward structure-based coordinates, such as the fraction

of native contacts and the root mean square distance (RMSD) from reference

structures. Transition-path analysis, for example, can be used to determine the

coordinates that best represent the underlying free-energy barrier[58]. Time-

correlation analysis, on the other hand, allows for the classification of collec-
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tive variables associated with the slowest motions[59]. These techniques have a

common limitation in that they require a priori definition of coordinates, which

can be computationally expensive.

Local minima can be addressed individually, and visualization of the distances

between local minima in a hierarchical representation is also an appealing way

to probe the energy landscape[60]. Themethods described above are well suited

to studying funnel-like landscapes with well-defined energy basins. IDPs, on

the other hand, are far more difficult systems to study because of their high

disorder, shallow energy minima, and lack of reference structures.

1.3.2 Energy Landscape Visualization Method (ELViM)

A multidimensional scaling (MDS) method, is used in a recent successful ap-

proach to investigating IDPs. The goal of MDS methods is to represent an

ensemble of objects in a low-dimensional space for easier analysis, given an

ensemble of objects in the original multidimensional phase space. The ELViM

method is one of the most intimidating of them all[61, 62]. This method is based

on pairwise distances between all structures in the ensemble and is reaction

coordinate-free[63]. The energy landscape can be visually analysed using this

method. Furthermore, multiple ensembles can be mapped into a single phase

space, allowing comparison of ensembles studied under various physical and

chemical conditions. This MDS strategy appears to give an accurate depiction

of the IDP energy landscape.

1.3.3 Parallel Tempering

IDPs are found in shallow, rugged free energy landscapes with multiple confor-

mational populations in dynamic equilibrium. As a result, using experimental

techniques to structurally resolve them at high resolution is difficult. Molecular
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simulation has recently been used in conjunction with low-resolution ensemble-

averaged data to elucidate the structural and dynamical features of IDPs at

higher resolution[64, 65, 66]. Despite many advances, extracting an IDP’s ex-

perimentally consistent ensemble remains a difficult task. This is due in part to

the presence of multiple conformational states in an ensemble, which makes ex-

perimental data noisy, sparse, and/or ambiguous. Molecular simulations, on the

other hand, typically sample only a small portion of an IDP ensemble’s phase

space, despite the fact that the underlying free energy landscape is shallow. The

presence of significant entropic barriers between different population clusters is

an often overlooked aspect of IDPs sampling and the main reason for samples

failing to replicate the ensemble and thermodynamic averages of experiments.

Adequate sampling is required for the determination of experimentally con-

sistent ensemble data from simulation, which is typically accomplished in ad-

vanced sampling approaches by either applying structural restraints using col-

lective variables or re-weighting the obtained conformations to arrive at Boltz-

mann weighted populations[67, 68]. Parallel tempering (PT) sampling is ap-

pealing because it can be used effectively without any reweighing or restraining,

and it does not require the use of a low-dimensional collective variable (CV) to

define the ensemble states. Furthermore, in cases where sampling results do

not match experimental data, PT can be seamlessly combined with other CV-

based restraining methods or re-weighted to solve the problems of interest[69,

70, 71]. Several variants of PT have evolved in recent years like TREMD,

REST/REST2, REHT and gREST.
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1.4 IDP Examples

1.4.1 Prostate-Associated Gene 4 (PAGE4)

Prostate Cancer (PCa) is a leading cause of mortality and morbidity around the

world. PAGE4, a protein that appears to act as both an oncogenic factor and

a metastasis suppressor, has been identified as a novel therapeutic target for

PCa. PAGE4 is a prostate-specific Cancer/Testis Antigen that is highly upreg-

ulated in the human foetal prostate and its diseased states, but not in the adult

normal gland[72]. The PAGE4 protein is predicted to be highly disordered by

bioinformatic algorithms[73]. PAGE4 is expected to have several regions (most

notably residues 13–19 and 86–92, and to a lesser extent 49–61) with a slightly

increased propensity to order, according to these analyses[74]. Also, it has been

reported that, PAGE4 has metastable secondary structures, according to nuclear

magnetic resonance (NMR) experiments.

PAGE4 acts as a stress-response protein by suppressing reactive oxygen species

and preventing DNA damage. The kinase HIPK1 can phosphorylate PAGE4 at

two residues (S9, T51); phosphorylation of PAGE4 allows it to interact with the

AP-1 transcription factor complex [75]. Another kinase, CLK2, can phosphory-

late PAGE4, and the two phosphorylated versions of PAGE4 (HIPK1-PAGE4

and CLK2-PAGE4) have opposing functions due to their different conforma-

tional dynamics[76, 72]. CLK2-PAGE4 has a reduced affinity for AP-1 due

to its random coil-like structure, whereas HIPK1-PAGE4 has a compact con-

formational ensemble that can bind AP-1 and potentiate c-Jun[72]. Because

c-Jun potentiation indirectly increases CLK2 levels via AR, a negative feed-

back loop is formed, resulting in oscillations in AR levels and those of different

phosphorylated versions of PAGE4. These oscillations can cause non-genetic
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Figure 1.2: ELViM representation of different phosphorylated states of PAGE4; adapted from
Ref. [77]

heterogeneity in a clonal prostate cancer cell population, as well as dynamic

levels of AR in individual cells, which can affect their therapeutic sensitivity.

1.4.2 Ras-family proteins

Ras, which stands for “Rat Sarcoma Virus,” is a group of proteins found in all

animal cell types and organs. Ras proteins are members of the small GTPase

protein family, which is involved in signal transmission within cells. When

incoming signals ”switch on” Ras, it activates other proteins, which in turn ac-

tivate genes involved in cell growth, differentiation, and survival. Ras gene mu-

tations can result in the production of permanently activated Ras proteins, which

can cause unintended and overactive signalling within the cell even when no ex-

ternal signals are present. Overactive Ras signalling can lead to cancer because

these signals cause cell growth and division[78]. HRAS, KRAS, and NRAS

are the three most common oncogenes in human cancer; mutations that perma-

nently activate Ras are found in 20 to 25 percent of all human tumours, and up

to 90 percent in certain types of cancer[79]. As a result, Ras inhibitors are being
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investigated as a potential treatment for cancer and other diseases characterised

by Ras over-expression.

Six beta strands and five alpha helices make up Ras[80]. It has two domains:

a G domain that binds guanosine nucleotides and a C-terminal membrane tar-

geting region (CAAX-COOH, also known as CAAX box) that is lipid-modified

by farnesyl transferase, RCE1, and ICMT. The G domain has five G motifs that

directly bind GDP/GTP. The P-loop, also known as the G1 motif, binds the beta

phosphate of GDP and GTP. The threonine35 in the G2 motif, also known as

Switch-I or SW1, binds the terminal phosphate (-phosphate) of GTP and the

divalent magnesium ion bound in the active site. The DXXGQ motif is found

in the G3 motif, also known as Switch-II or SW2. The D stands for aspartate57,

which is specific for guanine versus adenine binding, and the Q stands for glu-

tamine61, which activates a catalytic water molecule for GTP to GDP hydroly-

sis. The LVGNKXDL motif in the G4 motif provides specific interaction with

guanine. A SAK consensus sequence can be found in the G5 motif. The A is

alanine146, which provides guanine specificity rather than adenine specificity.

When GTP is hydrolyzed into GDP, the two switch motifs, G2 and G3, are

the main parts of the protein that move. The basic functionality of a molecular

switch protein is mediated by this conformational change mediated by the two

switch motifs. The “on” state of Ras is the GTP-bound state, while the “off”

state is the GDP-bound state. Ras also binds a magnesium ion, which aids in

nucleotide binding coordination.
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2 Concepts of Computational Methods and Techniques

2.1 Basics of Statistical Mechanics

2.1.1 Phase Space Trajectory

Let a particle be in a one-dimensional space at the time t = 0. So to describe the

particle’s future trajectory at any time t, we need the time-dependent evolution

of the position and momentum coordinates. Therefore phase space is the two-

dimensional coordinate space constructed by these two coordinates, position

and momentum, when plotted together. When this phase space is extended to

three-dimensional space the dimensionality of the phase space becomes six and

is referred to as the µ-space. When extended to N number of particles it creates

a 6N-dimensional phase space, also called the Γ-space. Thus, the particle’s

temporal position can be represented by the curve depicted by the representative

point with the time (t). This representation of the time evolution of the position

and moment of representative points in phase space known as the trajectory.

Figure 2.1: Schematic representation of the trajectory of a system of N particles
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2.1.2 Ensembles

The concept of the ensemble is based on the fact that an equilibrium system is

made up of a large number of microscopic states, also known as microstates.

When the system’s temperature is non zero, the system’s natural motion takes it

through some of these microstates in a timescale comparable to the macrostate’s

measurement timescale. If we assume that the system has constant energy at all

times, the trajectory moves on a constant energy surface. As a result, the prob-

ability distribution of the thermodynamical and mechanical properties at these

microstates is required to calculate the system’s average equilibrium properties.

Instead of chasing the time evolution of these microstates to obtain this distri-

bution, we consider a mental picture of a large number of systems with similar

macroscopic properties such as the number of particles (N), pressure (P), vol-

ume (V), and energy (E). Given the large number of microstates, it is highly

likely that the microstates inhabited by each system are distinct. Hence, ensem-

ble is a mentally constructed collection of thermodynamically identical systems.

The ensembles can be classified based on the thermodynamic constraints.

• Microcanonical Ensemble (NVE): The number of particles, volume, and

energy of the system all remain constant in this ensemble; thus, each mi-

crostate in the ensemble should have the same energy, volume, and number

of particles. As a result, the system must be an isolated system that cannot

exchange energy or particles with its surroundings in order to obtain this

ensemble. The schematic is represented in the Figure 2.2.

• Macrocanonical Ensemble (NVT): Although the energy of the system can

vary, the number of particles, volume, and temperature of the system re-

main constant in this ensemble, so each microstate in the ensemble should
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Figure 2.2: Schematic representation of microcanonical ensemble

correspond to the same temperature and have the same number of particles

and volume. To achieve this ensemble, the system must be a closed sys-

tem that cannot exchange particles with the environment but can exchange

energy in order to maintain an equilibrium temperature. In molecular dy-

namics simulation, this is the most commonly used ensemble. As a result,

we’ll talk about it more in the second half of the chapter.The schematic is

represented in the Figure 2.3.

Figure 2.3: Schematic representation of macrocanonical ensemble

• Grandcanonical Ensemble (µVT): Neither the energy nor the number of

particles are fixed in this ensemble. The chemical potential, volume, and

temperature in this system remain constant. The system should be open

for this ensemble. The schematic is represented in the Figure 2.4.
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Figure 2.4: Schematic representation of grandcanonical ensemble

2.1.3 The First Postulate: Time average is equal to Ensemble average

The time average of a quantity (Ō) can be defined as the average of the quantity

over a long period of time. Mathematically,

Ō = lim
τ→∞

1

τ

∫ t0+τ

t0

O(t)dt (2.1)

On the other hand, the ensemble average can be defined as:

⟨O⟩ = lim
N→∞

1

N

N∑
i=1

Oipi (2.2)

here pi is the probability of the particle in the ensemble to be in ith microstate.

For large N and τ , the first postulate of statistical mechanics states that “the time

average is equal to the ensemble average”, therefore,

Ō = ⟨O⟩ (2.3)

2.1.4 The Second Postulate: Equal A Priori Probability

When given a very long time, this postulate states that a system has an equal

chance of being in any microstate corresponding to the system’s macrostate.
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In other words, given enough time, the system visits each of the microstates

an equal number of times. However, because the criteria for a long time have

not been defined properly, it is assumed that this time is much longer than any

relaxation time of the system, preventing us from capturing it in all possible

states.

2.1.5 The Ergodic Hypothesis

The Ergodic hypothesis states that if a system is given enough time, it is free

to explore all of the microstates associated with it, and the time spent in each

microstate is proportional to its volume in phase space. However, if a system

becomes trapped in a region of phase space, this hypothesis is broken, and the

ensemble average is no longer equal to the time average, violating the statistical

mechanics’ first postulate. As a result, the Ergodic hypothesis serves as a link

between the two statistical mechanics postulates. The second postulate is valid

because of the Ergodic hypothesis, and the ensemble average is done because

of the second postulate.

2.1.6 Canonical Partition Function

We would refer from here the macrocanonical ensemble as the canonical en-

semble. We now consider a system consisting of Np number of replicas of the

original NVT system, as we know in canonical ensemble N, V, and T are kept

constant. All of the ensemble’s systems are placed next to each other so that

they can exchange heat through their heat-conducting walls, but not matter.

This entire ensemble is placed in a heat bath, and after reaching equilibrium,

a thermal insulation is placed around the entire ensemble, forming an isolated

super-system. This is done to convert the canonical ensemble to a microcanon-

ical ensemble, allowing statistical thermodynamics postulates that are only true
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for microcanonical ensemble to be applied to canonical ensemble as well. The

microcanonical super-ensemble of the system under consideration is made up

of mental replicas of such a super-system.

Now we denote ni as the number of systems in our super-energy system’s Ei,

and Et as the total energy of the super-system. Hence,

∑
i

ni = Np and
∑
i

niEi = Et (2.4)

The number of possibilities for distributing ni number of systems with energy

Ei in Np number of states are:

Ω(ni) =
Np!

n1!n2!n3! . . .
(2.5)

Hence , probability of occurrence of a given system ni with energy Ei is:

Pi =

∑
i niΩ(ni)∑
iΩ(ni)

(2.6)

Using Stirling‘s approximation,

lnΩj(n) =

(∑
j

nj

)
ln

(∑
j

nj

)
−

(∑
j

nj lnnj

)
(2.7)

We now use the lagrange undetermined multiplier method to incorporate the

conditions:
∂

∂ni

[
lnΩj(n)− α

∑
j

nj − β
∑
j

njEj

]
= 0 (2.8)

The two undetermined multipliers here are α and β. Now we will differentiate

using the maximum term method to obtain the following expression:

ln

(∑
j

nj

)
− lnn∗i − α− βEi = 0 (2.9)
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n∗i
N

= e−α−βEi, j = 1, 2, . . . (2.10)

Here n∗i is the most probable distribution. Here sum over n∗i is equal to the total

number of systems in the ensemble.

eα =
∑
i

e−βEi (2.11)

Hence,

P̄i =
n∗i
N

=
e−βEi(N,V )∑
i e

−βEi(N,V )
(2.12)

The denominator becomes the canonical partition function (Z).

ZN(V, T ) =
∑
i

e−βEi(N,V ) (2.13)

2.1.7 Relating Thermodynamics and Partition Function

The average energy, Ē can be defined mathematically as follow:

Ē =
∑
i

PiEi =

∑
iEie

−βEi(N,V )∑
i e

−βEi(N,V )
(2.14)

Hence,

dĒ =
∑
i

(EidPi + PidEi)

=
1

β

∑
i

[
(lnPi + lnZ)dPi + Pi

(
∂Ei

∂V

)
N

dV

] (2.15)

Now , we know that, ∑
i

P = 1 ⇒
∑
i

dPi = 0 (2.16)

S = −kB
∑
i

Pi lnPi (2.17)
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We also know that,

dS = −kBd

(∑
i

Pi lnPi

)
= −kB

(∑
i

dPi +
∑
i

lnPidPi

)
(2.18)

These two equations can be combined, to get,

− 1

β
d

(∑
i

Pi lnPi

)
= dĒ + pdV (2.19)

Comparing with, TdS = dE + pdV , we get,

TdS = −1

β
d

(∑
i

Pi lnPi

)
(2.20)

Hence,

β =
1

kBT
(2.21)

Using the thermodynamic relationship between entropy, internal energy and

Helmholtz free energy, we get,

S =
Ē

T
+ kB lnZ =

Ē

T
− A

T
(2.22)

Hence,

A = −kB lnZ(N, V, T ) (2.23)

Moreover, we also know that,

dA = −SdT − pdV (2.24)

Hence,

S = −
(
∂A

∂T

)
V,N

= kBT

(
∂ lnZ
∂T

)
V,N

+ kB lnZ (2.25)
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and

p = −
(
∂A

∂T

)
T,N

= kBT

(
∂ lnZ
∂T

)
T,N

(2.26)

2.2 Basic Concepts of Molecular Dynamics Simulation

2.2.1 General Features of Force Field

Force Fields are the most important part of molecular dynamics simulations.

Force fields contain terms that help to calculate the overall energy of the sys-

tem at any time point. As according to the Born-Oppenheimer approximation,

the electronic and nuclear motion of the system can be decoupled, in the force

fields we only account for the nuclear part of the system[81]. This greatly re-

duces the computational cost because we do not have to look for the electronic

motions[82, 83]. However, the drawback is that it is unable to predict bond

formation and breakage.

The terms in the force fields are simple and come from several molecular

motions of bonds, for example stretching and bending, described by Hooke’s

law[84, 85, 86]. Most of the force fields describe the motion with four com-

ponents, the first two arising from bonds, the third one arising from the bond

rotations, and the last one pertains to the non-bonded interactions. Therefore,

the general form looks like this:

V (rN) =
∑
bond

Vij +
∑
angle

Vijk +
∑

dihedral

Vijkl +
∑
nb

Vij (2.27)

Here, the r signifies that V is the function of particle coordinate and the N is the

number of particles in the system.
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2.2.1.1 Bonded Potential

Figure 2.5: Atoms i and j connected by spring with force constant kij; adapted from Ref. [87]

The bonded potential corresponds to the energy term contributed by the covalent

bonds present in the system and is derived from Hooke’s law. The expression

is as follows: ∑
bond

Vij =
∑
bond

1

2
Kij(rij − reqij )

2 (2.28)

Here, Kij refers to the force constant of the covalent bond, rij is the instanta-

neous bond length, and reqij is the equilibrium bond length between atoms i and

j.

2.2.1.2 Angular Potential

Figure 2.6: Atoms i, j and k making an angle θijk; adapted from Ref. [87]
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The angular potential term corresponds to the energy term contributed by the

vibrational angular motion present in the system corresponding to atoms i, j,

and k. The expression is as follows:

∑
angle

Vijk =
∑
angle

1

2
[Kijk(θijk − θeqijk)

2 +KUB(rik − reqik )
2] (2.29)

Here Kijk refers to the angle constant and KUB is the Urey-Bradley constant

used to describe a non-covalent spring between the ith and kth atom. θijk is the

instantaneous angle term and θeqijk is the equilibrium angle between i, j, and k.

rik refers to the instantaneous distance between atoms i and k, and reqik is the

respective equilibrium term.

2.2.1.3 Torsional Potential

The torsional potential term corresponds to the energy term contributed by the

dihedral angular spring present between the two planes made by the first three

atoms and by the last three atoms. There are two types of dihedral terms:

• Proper Dihedral: The proper dihedral consists of four atoms which are

joined consecutively in a chain fashion.

Figure 2.7: Atoms i, j, k and l making a proper dihedral θijkl; adapted from Ref. [87]

21



The potential can be expressed as follows, taking the first few terms from

the Fourier transform:

∑
dihedral

Vijkl =
∑

dihedral

1

2
Kijkl(1 + cos(nϕijkl − ϕ0)) (2.30)

Here Kijkl is the torsional angle constant, the ϕijkl is the instantaneous

dihedral angle and ϕ0 is the minimum-potential angle. n is themultiplicity,

which implies the number of minima present in a complete 360o rotation

of the dihedral.

• Improper Dihedral: The improper dihedral consists of four atoms, where

the three atoms are connected to one central atom.

Figure 2.8: Atoms i, j, k and l making a improper dihedral θijkl; adapted from Ref. [87]

It helps to maintain the chirality of a heavy atom or to maintain the pla-

narity. This is approximated as a harmonic potential. The expression is as

follows: ∑
dihedral

Vijkl =
∑

dihedral

1

2
Kijkl(ϕijkl − ϕ0)

2 (2.31)

Here Kijkl is the torsional angle constant, the ϕijkl is the instantaneous

dihedral angle and ϕ0 is the reference dihedral angle.
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2.2.1.4 Non-bonded Potential

The non-bonded potential can be of two types:

• Electrostatic Potential: The electrostatic potential accounts for the inter-

action of the charged species. It is repulsive for species with the same

charge and is attractive otherwise.

Figure 2.9: Charged atoms i and j separated by distance rij; adapted from Ref. [87]

The expression is given by the coloumbic potential expression as follows:

∑
elec

Vij =
∑
elec

1

4πϵ0

qiqj
rij

(2.32)

Here, qi and qj are the charges of species i and j, respectively. The rij

corresponds to the distance between the two species.

• Lennard-Jones Potential: The Lennard-Jones potential accounts for the

weak dipole interaction energy between any two species i and j.

Figure 2.10: Atoms i and j separated by distance rij; adapted from Ref. [87]
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The expression is as follows:

∑
LJ

Vij =
∑
LJ

4ϵij

[(
σij
rij

)12

− 2

(
σij
rij

)6
]

(2.33)

Here ϵij is the depth of the potential well. The rij corresponds to the dis-

tance between the two species and σij refers to the distance at which the

species-species potential energy becomes zero.

2.2.2 Energy Minimisation

Figure 2.11: Energy Minimisation Scheme; adapted from Ref. [88]

Before starting of any simulation, the system must be at the minimum energy

conformation. However, the structures reported in the databases are not in the

energy-minimised state and the randomly added solvent configurations also can

create strong steric clashes among themselves or with the solvent. Therefore,

to obtain the local minima, the process of energy minimisation is performed.

Under this algorithm, the slope is equated to zero and the differential gradient
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is used for obtaining the local minima, as follows:

∂V

∂Ri
= 0&

∂2V

∂R2
i

> 0 (2.34)

Here V is the potential associated with the system and Ri is the coordinate in

3-dimension for the atoms in the system.

Most of the minimisation algorithms tend to locate the minima closest to the

initial configuration. The most used ones are: Steepest Descent and Conjugate

Gradient[81].

2.2.2.1 Steepest Descent

This algorithm lets the system to take one step each time and moves in the

direction opposite to the gradient of the potential energy, a coordinate function,

as follows:

rn+1 = rn − αn∇V (rn) (2.35)

where αn is the step-size and∇V (rn) is the potential energy gradient function.

However, GROMACS instills this in a slightly conditional way:

rn+1 = rn −
∇V (rn)

max[∇V (rn)]
αn (2.36)

heremax[∇V (rn)] is the largest scalar force on any atom in the system. Then,

• If Vn+1 < Vn, the new position is added and αn+1 is rescaled to 1.2αn

• If Vn+1 > Vn, the new position is rejected and αn+1 is rescaled to 0.2αn

This algorithm can be stopped manually by the user by giving a specific number

of steps for iteration, or giving an accuracy term.
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2.2.2.2 Conjugate Gradient

This method can be used to choose successive search directions that avoid the

constraint of repeatedminimization in the same direction[81].Aminimum range

is first determined in each direction, then converged using either a golden sec-

tion search or a quadratically convergent method. It considers the gradient his-

tory when determining the best next step direction.

In the early stages of the minimization, this approach is slower than steepest de-

scent, but it becomes more efficient as you get closer to the energy minimum.

The stop criterion and parameters used in conjugate gradient are the same as

those used in steepest descent in GROMACS[89].

2.2.3 Basic Approach

Here nowwe have the interaction potential terms for the atomic particles and the

corresponding energy minimised structure. Hence, now we can use the New-

ton equation to calculate the position and velocities of the atoms at different

instances. Therefore, from the potential, we need to find the force as follows:

Fi = −∂V
∂ri

(2.37)

After finding the force we now need to find the particle position from the mo-

mentum equation as follows:

Fi =
dpi
dt

= m
dvi
dt

= m
d2ri
dt2

(2.38)

The position and velocity can then be found by integrating the above equation

2.38.
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2.2.4 Numerical Integration Methods

As described above, the position and velocities of the particles can be calculated

using Newton’s equations of motion. However, the initial position and veloc-

ity needs to be specified. The position is specified by the energy minimised

structure and the velocity is randomly assigned by a Maxwell-Boltzmann dis-

tribution, as follows:

P (vi) =

√
mi

2πkBT
exp

(
−miv

2
i

2kBT

)
(2.39)

Here P (vi) is the probability of particle i with mass mi to have the velocity vi

at temperature T.

After this has been implemented different integration algorithms are used, such

as (i) Verlet algorithm[90], (ii) Leap-frog algorithm[91], and (iii) Velocity Verlet

algorithm[92] for numerically performing the integration and obtain the future

coordinates and velocity.

2.2.4.1 Verlet Algorithm

Using the Verlet algorithm[90], the velocity at t and position at time t+δt can be

calculated using positions from time t and t− δt. This is an iterative algorithm.

The position at time t+ δt and t− δt can be expressed as:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)(δt)2 + ... (2.40)

r(t− δt) = r(t)− v(t)δt+
1

2
a(t)(δt)2 + ... (2.41)

Adding Equation 2.40 and 2.41 yields:

r(t+ δt) = 2r(t)− r(t− δt) + a(t)(δt)2 (2.42)
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And the velocities can be calculated as follows:

v(t) =
[r(t+ δt)− r(t− δt)]

2δt
(2.43)

2.2.4.2 Leap-Frog Algorithm

Under the Leap-Frog Algorithm[91], the following terms are used:

v

(
t+

1

2
δt

)
= v

(
t− 1

2
δt

)
+ a(t)δt (2.44)

r (t+ δt) = r(t) + v

(
t+

1

2
δt

)
(2.45)

So as can be seen, the velocity is implemented first and then the position equa-

tion. The velocity leaps over the position to give the next midpoint values.

The new positions r(t + δt) depend on v
(
t+ 1

2δt
)
, which in turn depends on

v
(
t− 1

2δt
)
and a(t). Hence, the velocities at time t is as follows:

v(t) =
1

2

[
v

(
t+

1

2
δt

)
+ v

(
t− 1

2
δt

)]
(2.46)

Therefore, this algorithm calculates the half-integer step velocities which are

used to calculate the coordinates of the next steps.

2.2.4.3 Velocity-Verlet Algorithm

Under the Velocity-Verlet Algorithm[92], the following terms are used:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)(δt)2 (2.47)

v(t+ δt) = v(t) +
1

2
[a(t) + a(t+ δt)] δt (2.48)
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The v(t+ δt) is determined substituting:

v

(
t+

1

2
δt

)
= v(t) +

1

2
a(t)δt (2.49)

Hence, the equation becomes:

v(t+ δt) = v

(
t+

1

2
δt

)
+

1

2
a(t+ δt)δt (2.50)

2.3 Temperature and Pressure Control

For performing a simulation of biomolecules a constant number, volume and

temperature (NVT) needs to be maintained, which is essentially a canonical

ensemble. In addition to that, the density needs to be maintained, and hence we

use the constant temperature and pressure coupling, which is also an extended

Hamiltonian method, known as the isothermal-isobaric (NPT) ensemble.

2.3.1 Temperature Coupling

During the molecular dynamics simulation, the velocity (vi) are rescaled for

each of the atoms in the system according to the equipartition theorem so as to

maintain the temperature of the system. Hence, the temperature at each step of

the trajectory is calculated and the velocities are rescaled to bring the instanta-

neous temperature (T) to the required temperature (Treq).

3

2
kBT =

1

N

N∑
i=1

1

2
miv

2
i (2.51)

vi → vi

√
Treq
T

(2.52)

Here vi is the velocity of the ith particle having massmi in a system of N atoms.

The equation implies an isokinetic thermostat.
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However, their is an intrinsic problem with isokinetic thermostat. It strictly

maintains a constant temperature, which is highly unrealistic in a biomolecu-

lar system. Rather, biomolecular systems experience a range of temperatures

maintained on an average with the required temperature.

Therefore, small kinetic energy fluctuations, which is dependent on the tem-

perature, are allowed. And as the number of particles (N) increases the fluc-

tuations reduce. However, since simulation can’t account for huge number of

particles due to computational cost, appropriate thermostats are required which

can allow thermal fluctuations along with maintenance of an average required

temperature. Therefore, various thermostats have been developed such as An-

derson[93], Berendsen[94], Nose-Hoover thermostat[95, 96] etc. These ther-

mostats generate thermodynamics ensembles where the average temperature is

maintained throughout the trajectory.

For example, in the Nose-Hoover thermostat the Boltzmann distribution is re-

tained along with an extended ensemble approach. The system is strongly cou-

pled with the required temperature (Treq), giving the Hamiltonian extra degrees

of freedom.

2.3.2 Pressure Coupling

The major aim of the pressure coupling is to maintain a constant pressure

throughout the simulation[84]. The equipartition theorem can be used and can

be written as:

PV = NkBT + ⟨W ⟩ (2.53)

HereW = −1
3

∑
i r⃗iF⃗i, where F⃗i is the force vector on each individual particle

and r⃗i is the coordinate of it. Here is the pressure coupling the pressure is kept

constant by rescaling the box vectors.
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Similar to the thermostat described above, the Parinello-Rahman [95, 97] baro-

stat also uses an extended ensemble approach, generating a isothermal-isobaric

(NPT) ensemble in combination with Nose-Hoover thermostat. Under this, the

Netwon’s equation are modified to also incorporate the pressure, volume and

temperature. In addition to that, it includes additional terms to account for the

strength of the coupling between the thermostat and barostat to the system.

2.4 Tricks for Computational Efficiency

2.4.1 Periodic Boundary Conditions

The goal of molecular dynamics is to study bulk properties of a system. How-

ever, a real system consists of particles in the scale of Avogadro number of

particles (≈ 1023) or more. But with the current computational power mankind

has a system in the order of thousand particles can be simulated in a reasonable

amount of time. And small sized systems can give rise to inadvertent errors ef-

fecting the bulk properties. For example, surface effect is a bulk property. In a

real system, the ratio between number of particles at the surface and total num-

ber of particles is insignificant and hence the surface effect can be neglected.

However, in simulated cells, for a particle of 500 particles, 5002/3 = 63 particles

stay at the surface and hence the influence of surface effect can’t be neglected.

This drawback is therefore overcome by replacing the boundaries of the system

with periodic images. This technique is called periodic boundary condition.
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Figure 2.12: Periodic Boundary Conditions; adapted from Ref. [98]

Using this concept, the periodic images are arranged in all possible directions

in a 3-D lattice. Therefore, the particle coordinates are calculated by adding

integral multiples of the length of the box edges to the coordinates. Therefore,

if a real particle goes out of the box during the simulation, then an image par-

ticle enters the box from the opposite side to mimic the real system. And for

the calculation of particle interactions within the cutoff range, both the particle

neighbours are included.

2.4.2 Minimum Image Convention and Truncation of Intermolecular Interaction

This concept of Minimum Image Convention (MIC) and Truncation of Inter-

molecular Interaction (TIMI)[84] are very closely coupled to the PBCs. The

new problem introduced by PBC is of the force calculation in the system because

technically periodic boundary condition technically implies infinite atoms. So,

a cut-off zone must be introduced, which must be less than or equal to the box

dimension. This is called minimum image convention or MIC. The force here is

calculated both for the real and periodic images; however, a particle should not

see its own image. The cutoff is fixed to the original box dimension for particle

at the exact center.
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On the other hand, Truncation of Intermolecular Interaction (TIMI) takes into

account that two atoms separated by large distance negligibly interact or don’t

interact at all. This is true for short range interaction potentials where V (r) ∝ 1
rn

and n > 3. Therefore, not all particles needs to be considered greatly reducing

computing cost.

So, for a system of N particles, there are a total of NC2 ∼ (N −1)N interacting

pairs. Therefore, if N >> 1, then (N − 1)N ≈ N 2, which also implies that

computational power is squared. Therefore, MIC and TIMI come to the rescue

and save a magnitude of computational power by defining a spherical cutoff

range.

2.4.3 Long Range Forces: Ewald Summation and Particle Mesh Ewald

Methods described above such as the TIMI only take account short-ranged in-

teractions neglecting the Coloumbic and ion-dipole interactions. Therefore, in

such interactions implementing a cutoff radius will result in a very high error

in the interaction force calculations. To rescue these, the Ewald summation[99]

and Particle Mesh Ewald[100, 101] were introduced.

For the long-range forces, all the periodic images of the box are used to cal-

culate the electrostatic potential. Hence, the total electrostatic potential on an

atom ‘i’ is derived as the infinite pair potential sum of all the charged particles

in the box and their respective images. The sum that is derived is divided into

two parts: long-ranged and short-ranged. The short-ranged part is calculated

using the cutoff scheme, whereas the long-ranged part is usually taken care by

the Ewald summation methods[99] by decomposition.

In addition to this, under the ParticleMesh Ewald[100, 101], each atom is repre-

sented on a mesh grid and the potential function is represented as the interaction
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between the mesh points. Each mesh point is a separate particle that interacts

with all other mesh particles in a convolution. The potential function in the

mesh space is then evaluated via a Fast Fourier transformation. The mesh size

and interpolation strategy determine the accuracy and computational efficiency.

2.4.4 Neighbour Lists and Cell Lists

However, the use of cutoff distance drastically decreases the efficiency of the

interaction calculation. Because to implement the cutoff scheme all the atoms

need to be mapped to look into which atoms come and do not come under the

cutoff radius, which is then used to calculate the final interaction energy.

Therefore, the neighbour list scheme[90, 91, 102] is implemented to increase

the computational efficiency. A list of nearby atoms to be included in the non-

bonded interaction calculation is stored in an array and updated periodically

in this method. The distance used to calculate each atom’s neighbouring list

must be greater than the non-bonded cutoff distance, so that no atom outside

the neighbour cutoff gets closer than the non-bonded cutoff distance before the

neighbour list is updated. A correction term can be added to the energy estimate

at each step of updating the neighbour list.

Calculating the order on N2 for an ‘N’ particle system is required to prepare

and update such a neighbouring list. To reduce the number of calculations or

neighbour searches, the entire simulation space can be divided into cells, with

the search limited to particles that are present within the cells[102, 103, 104].

2.4.5 Free Energy Calculations: Umbrella Sampling

Under steered molecular dynamics, there can be some instances when the

biomolecule of interest may get trapped in a local free energy minima due to

the presence of a high energy barrier, violating the Ergodic hypothesis. Hence,
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under these conditions the umbrella sampling technique is used which a type

of enhanced sampling method. The technique of umbrella sampling was devel-

oped by two scientists, Torrie and Valleau in 1977[105]. In this method, a bias

potential is used to increase the probability of the molecule to visit the unex-

plored minima at the other end of the high energy barrier. After sampling the

whole phase space, the effect of this bias potential is then finally removed.

Figure 2.13: High Activation Energy Barrier separating State I and State II; adapted from Ref.
[106]

As shown in the Figure 2.13, the states I and II are separated by a very high

energy barrier. Therefore, a biomolecule trapped at state I has a very low chance

of visiting state II in a real time frame and vise-versa. Therefore, a bias potential

is as follows:

W (χ) = K(χ− χ0)
2 (2.54)

Here K is the spring constant of the bias potential and ξ is the reaction coordinate
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of the system.

Therefore, the effective potential is:

V0(χ) = V (χ)−W (χ) (2.55)

We must now recover the probability distribution for the unbiased trajectories

after sampling the barrier top. This is done using a simple mathematical trick

as written below.

⟨O⟩V0
=

∫
O(χ) exp(−βV0(χ))dχ∫

exp(−βV0(χ))dχ

=

∫
O(χ) exp(−β(V (χ) +W ))dχ∫

exp(−β(V (χ) +W ))dχ

=

∫
O(χ) exp(−β(V (χ)) exp(βW ))dχ∫

exp(−β(V (χ)) exp(βW ))dχ

=
⟨O(χ) exp(βW )⟩V

⟨exp(βW )⟩V

(2.56)

Using the above mathematical equations, we can adjust the bias potential (W)

to achieve sufficient sampling in the desired region of the phase space, and then

remove the bias potential to recover the unbiased ensemble average. Because

we are using a harmonic potential that resembles an umbrella to constrain the

system to a specific region of phase space in this case, this method is known as

the umbrella sampling method [84, 102, 106].

However, umbrella sampling is computationally expensive. This is because the

method involves creating multiple windows which also should have significant

overlap to minimise errors, as errors from each window adds quadratically.
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Figure 2.14: Reaction coordinates between two states divided into into distinct windows;
adapted from Ref. [106]

However, the data from the windows is difficult to analyse. Therefore, a method

called the Weighted Histogram Analysis Method [84, 106] is used to combine

different simulations with different biasing potentials to generate the combined

Potential Mean Force (PMF). The PMF provides with important insights as it

gives the gives the free energy barrier separating different states. Hence, the

information about the relative stability of different states present, can be in-

ferred. The method along with other reaction coordinates can also be extended

to multiple reaction coordinates as well.

2.4.6 Free Energy Calculations: Metadynamics

Metadynamics is another enhanced sampling method where the rare events be-

yond high energy barriers can be explored, implying ergodicity, and hence the

free energy of the system can be estimated[107]. The process is well-known
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as “filling the free energy with computational sand”. Under this algorithm, the

assumption is made that the free energy of the system can be described by col-

lective variables (CVs)[107]. Hence, during the simulation with metadynamics,

more and more Gaussian hills are added as time progresses and the system is

prevented to go back until all the system explores the complete energy land-

scape and starts making random walks.

Let the Hamiltonian of the system with the bias potential, Vbias, be: H =

K + V + Vbias where Vbias is a function of CVs. Now, we will start updat-

ing the bias potential with the bias rate ω and st is an instantaneous collective

variable value at t. Thus,

∂Vbias(s)

∂t
= ωδ(|s− st|) (2.57)

which implies,

Vbias =

∫ tsim

0

ωδ(|s− st|)dt (2.58)

For computer simulations, the time t is discretized into τ intervals and the δ is

replaced by a multidimensional positive Gaussian kernel function. This makes

the equation as:

Vbias ≈ τ

tsim
τ∑

j=0

ωK(|s− sj|)

≈ τ

tsim
τ∑

j=0

ω exp

(
−1

2

∣∣∣∣s− sj
σ

∣∣∣∣2
) (2.59)

Metadynamics can be classified into two different categories based on deposited

Gaussian heights: Standard Metadynamics and Well-tempered metadynam-

ics[108].
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2.4.6.1 Standard Metadynamics

In standard metadynamics, the height of the deposited Gaussian kernels stay

fixed through the simulation. The height of the Gaussian kernels (W ) can be

given by the product of the bias potential rate (ω) and the Gaussian deposition

stride (τ ) i.e., the time intervals. Therefore,

Vbias ≈
∑

W (ωτ) exp

(
−

d∑
i=1

1

2

∣∣∣∣si − si(q(ωτ))

σi

∣∣∣∣2
)

(2.60)

As per the assumption ofmetadynamics, in the long-time limit, the bias potential

converges to minus the free energy as a function of the CVs. Hence,

Vbias(s, t→ ∞) = −F (s) (2.61)

where the free energy is defined as:

F (s) = −1

β
ln
(∫

dq δ(s− s(q))e−βU(q)

)
(2.62)

here β = 1/kBT and U(q) is the potential energy function.

However, standard metadynamics has its own sets of limitations, which include:

• The bias potential overfills the underlying Free Energy Surface and pushes

the system toward high-energy regions of the CVs space, which makes it

non-trivial to decide when to stop a simulation.

• Identifying a set of CVs appropriate for describing complex processes is

far from trivial.
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2.4.6.2 Well-tempered Metadynamics

Therefore, to address the first limitation of the standard metadynamics, the con-

cept of well-tempered metadynamics comes into the picture[109].

Figure 2.15: Well-tempered metadynamics simulation showing decreasing Gaussian height
with time; adapted from Ref. [110]

Here, the bias deposition decreases with time. The new W therefore be-

comes,

W (ωτ) = W0 exp
(
−Vbias(s(q(ωτ)), ωτ)

kB∆T

)
(2.63)

This makes the bias potential to be

Vbias =
∑

W0e
−Vbias(s(q(ωτ)),ωτ)

kB∆T exp

(
−

d∑
i=1

1

2

∣∣∣∣si − si(q(ωτ))

σi

∣∣∣∣2
)

(2.64)

However, this leads to non-compensation in the underlying free energy which

is now given as,

Vbias(s, t→ ∞) = − ∆T

T +∆T
F (s) (2.65)

From the Eqn. 2.65, it is evident that as the value of ∆T approches

∆T → 0 ⇒ Standard Molecular Dynamics
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∆T → ∞ ⇒ Standard Metadynamics

This factor is defined as the bias factor in well-tempered metadynamics and is

denoted by the symbol γ. Therefore,

γ = 1 +
∆T

T
⇒ 1− γ

γ
=

∆T

T +∆T
(2.66)

This leads to the bias potential, at long time, becoming,

Vbias(s, t→ ∞) = −1− γ

γ
F (s) (2.67)

2.5 Computational Methods for Analysis

2.5.1 Root-Mean Square Distance (RMSD) Analysis

RMSD is mainly useful in the quantifying how much a configuration of protein

or segment has changed from its native state. This helps to analyse if a protein

is in a different configurational space by undergoing a transition. It is calcu-

lated by averaging over particle coordinate giving time-specific values. For

biomolecular systems, the RMSD is normalised over masses. The expression

is given as:

RMSD(t) =

√√√√ 1

M

N∑
i=1

mi|xi(t)− xi(0)|2 (2.68)

2.5.2 Root-Mean Square Fluctuation (RMSF) Analysis

RMSF is mainly useful in the quantifying howmuch a protein segment is fluctu-

ating through time. This particularly helps in differentiating between structured

and unstructured regions in a protein of interest. It is calculated by averaging

over time coordinate giving particle-specific values. The expression is given
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as:

RMSFi =

√√√√ 1

T

T∑
τ=1

|xi(τ)− x̄i|2 (2.69)

2.5.3 Theory of Correlation Analysis

2.5.3.1 Gaussian Network Model

Gaussian NetworkModel is used to study the fluctuation and correlated motions

of atoms. In this model, the α-carbons of the amino acids of the proteins are

identified as nodes, and all nodes are connected by springs within an interaction

range generally with a cutoff distance (rc) of 0.7Å.

Figure 2.16: Nodes in the GNM model connected with springs; adapted from Ref. [111]

Here, we define the:

∆Ri = Ri −R0
i and ∆Rj = Rj −R0

j (2.70)

Therefore,

∆Rij = ∆Rj −∆Ri (2.71)
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The potential energy of the model can be written as:

VGNM =
γ

2

[
N∑
i,j

Γij(∆Ri −∆Rj)
2

]

=
γ

2

[
N∑
i,j

Γij

[
(∆Xi −∆Xj)

2 + (∆Yi −∆Yj)
2 + (∆Zi −∆Zj)

2
]]

(2.72)

Here γ is the spring constant and Γij is the ijth element of Kirchhoff’s matrix

of inter-residue contact, Γ, defined by:

Γij =


−1, if i ̸= j and Rij ≤ rc

0, if i ̸= j and Rij > rc

−
∑

i ̸=j Γij, if i = j

(2.73)

2.5.3.2 Covariance Matrix

The general assumption of the GNM is that all fluctuations are isotropic and

Gaussian in nature. After further derivations, it can be shown that the covari-

ance matrix is a combination of expectation values of residue fluctuations and

cross-correlations in the diagonal and off-diagonal elements, respectively. The

covariance matrix (for X) is related to Kirchhoff’s matrix as follows:

Ξ =
kBT

γ
Γ−1 (2.74)

Similarly, it can be written for Y and Z. Therefore, the residue fluctuations and

cross-correlations can be expressed as follows:

⟨∆R2
i ⟩ =

3kBT

γ
(Γ−1)ii (2.75)
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⟨∆Ri.∆Rj⟩ =
3kBT

γ
(Γ−1)ij (2.76)

Therefore, the covariance matrix (for X) is as follows:

Ξ =


⟨∆x21⟩ ⟨(∆x1)(∆x2)⟩ . . . ⟨(∆x1)(∆xn)⟩

⟨(∆x2)(∆x1)⟩ ⟨∆x22⟩ . . . ⟨(∆x2)(∆xn)⟩
... . . .

⟨(∆xn)(∆x1)⟩ ⟨(∆xn)(∆x2)⟩ . . . ⟨∆x2n⟩

 (2.77)

Here the cross-correlation terms are given by the following expression:

⟨(∆xi)(∆xj)⟩ = ⟨(∆x0i − (⟨xi⟩))(∆x0j − (⟨xj⟩))⟩ (2.78)

2.5.3.3 Correlation Matrix

Therefore, it can be summarised as:

⟨∆Ri.∆Rj⟩ = ⟨∆xi.∆xj⟩+ ⟨∆yi.∆yj⟩+ ⟨∆zi.∆zj⟩ (2.79)

⟨∆Ri.∆Ri⟩ = ⟨∆x2i ⟩+ ⟨∆y2i ⟩+ ⟨∆z2i ⟩ (2.80)

Now, the fluctuational cross-correlation matrix then was calculated as follows:

C(i, j) =
⟨∆Ri.∆Rj⟩√

⟨∆Ri.∆Ri⟩⟨∆Rj.∆Rj⟩
(2.81)
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3 Drug-induced conformational dynamics of oncogenic

KRas: Comparing the effects of AMG-510 & MRTX-849

3.1 Introduction

3.1.1 KRas: A MAPK signalling protein & its cellular functioning

The MAPK (Mitogen Activated protein Kinase) pathway or the ERK (Extra-

cellular Signal-Regulated Kinase) pathway are a relay of proteins in the cell

that communicate a signal to the cellular DNA from the extracellular recep-

tor. It mainly consists of proteins that are involved in the phosphorylation of

downstream proteins tomake them “active” or “inactive” by acting asmolecular

switches.

Figure 3.1: Schematic of MAPK/ERK cellular signalling pathway; adapted from Ref. [112]
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The Ras-family proteins acts as a crucial relay in this chain. And KRas (Kirsten

Rat sarcoma) is one of them [113]. It generally stays in an “Inactive” confor-

mation when bound to GDP. When an upstream signal is intercepted, the SOS-

family (Son of Sevenless) of proteins, which includes GEFs (Guanine Exchange

Factors) catalyses the GDP-to-GTP exchange in the KRas, switching the latter

from an inactive state to an active state. In this state, it is capable of activating

downstream targets by phosphorylating them. Once it does the phosphoryla-

tion, under normal physiological conditions, it being a GTPase, hydrolyses the

GTP to GDPwith the help of a protein called GAP (GTPase Activating Protein),

which catalyses the process. The schematic of the pathway has been shown in

the Figure 3.1.

Figure 3.2: KRas function under physiological and mutated states; adapted from Ref. [114]

The schematic structure of KRas is as given below in the Figure 3.3. It has

three important regions which act as the active site of the protein: the P-loop,
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Switch-I and Switch-II, amongwhich the last two act as Intrinsically Disordered

Regions. There are a total of 5 α-helices, 5 β-sheets and multiple loops forming

a globular kind of protein structure. The HVR (Hyper-variable Region) region

beyond 169 amino acid has been deleted for illustrative purposes.

Figure 3.3: KRas Structure and schematic representation of helices and sheets; adapted from
Ref. [115]

However, mutations can occur in the KRas at some of the potential sites, which

can cause the protein to be oncogenic. Potential mutation sites are G12, G13,

and Q61. These sites are essential in the functioning of KRas, and hence their

mutation leads to abnormalities in the MAPK pathway. These mutations es-

sentially lead to the loss in the GTPase activity of the KRas leading to cancer,

predominantly seen in the lung cells. Therefore, the KRas always stays in the

active state and promotes cell growth and proliferation. The schematic of the

abnormal mechanism is shown in Figure 3.2.

3.1.2 KRas in Lung Cancer

Lung cancer is the most frequently diagnosed cancer and a leading cause of

cancer-related death worldwide making up almost 25% of all cancer deaths

[116]. Non-small-cell lung cancer (NSCLC) is the most commonly diagnosed
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form of the disease, accounting for >85% of the total cases [117]. Squamous cell

carcinoma and adenocarcinoma are examples of non-small-cell lung tumours

that act similarly. Mutation in the protein involved in the MAPK signalling

pathway, i.e. KRas, is the leading cause of NSCLC.

Figure 3.4: Pie chart showing mutational distribution for KRas malignancy in NSCLC

3.1.3 Most fatal G12C mutation and its drug induced inhibition

The major codon affected in these NSCLC cells is codon 12. The remaining

being 13 and 61 [118]. And among the codon 12, G12C is the most common

mutation accounting to around 46% as shown in Figure 3.4 [119]. The other

major ones include G12V, G12D, and G12A. Recently, for the G12C-mutated

KRas two drugs named AMG-510 and MRTX-849, were designed by Amgen

and Mirati Therapeutics, respectively. The latter was recently approved by the

FDA [120]. One aspect of this project mainly involves investigating the G12C-

mutated KRas and its interaction in the presence of those two drugs: Adagrasib

(MRTX-849) and Sotorasib (AMG-510). These two drugs covalently bind to

the mutated site by forming a C–S bond and inhibit the binding of GTP to KRas,
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leading the KRas to remain inactive for an indefinite period of time. The two

drugs are very similar in structure. However, it has been shown in the literature

that the former has an overall potency (Kinact/KI) of 35mM−1s−1, whereas

the later has a potency of 9.9mM−1s−1 [121, 122]. Here,Kinact represents the

rate of inactivation and KI represents the reversible affinity. Therefore, it was

of interest to look into the mechanism of the drug binding and the differential

inhibition caused by the two drugs at the molecular scale.

3.2 Methodology: Details of atomistic simulation methods and IDP spe-

cific force fields

3.2.1 System Preparation

3.2.1.1 Mutated protein in no-drug state

The original KRas protein configuration was taken from the Protein Data Bank

(PDB ID: 4OBE) from an X-Ray Diffraction experiment by Hunter et al.[123].

Subsequently, the glycine at position 12 was altered. Following that for the

simulation of the G12C variant with GDP attached, PyMol’s mutagenesis tool

was used to convert glycine to cysteine, in-silico. The structure was homology

modelled with the SWISS-MODEL server to account for missing regions[124].

The structure of the G12C-mutated protein is as shown in Figure 3.5.

3.2.1.2 Mutated protein in drug-bound state: Specific interaction with AMG-510 &

MRTX-849

X-Ray Diffraction structures from the protein data bank PDB ID: 6OIM[121]

and PDB ID: 6UT0[122] were utilised to investigate the mutated KRas structure

with the bound drugs Sotorasib andAdagrasib. Since, chemically both the drugs

are covalently bound to the mutated site and the force field doesn’t account for
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this new bond, the simulation parameters were missing for this residue. There-

fore, the bond was hypothetically created using a distance-constrained spring of

force constant k = 10, 000 kJ mol−1 nm−2. Also, because drugmolecules were

not contained in the initial force field of CHARMM36IDPSFF, the SWISS-

PARAM module was used to determine their parameters. Both structures were

homology modelled with the SWISS-MODEL server to account for missing

regions[124]. The structures of the G12C-mutated drug-bound proteins are as

shown in Figure 3.6 and Figure 3.7.

3.2.2 Hybrid protein specific force field: CHARMM36IDPSFF

The force field used for explicit solvent simulation of KRas with its ligands and

drugs was CHARMM36IDPSFF, as this force field was specifically designed to

simulate intracellular disordered proteins (IDP) or their regions (IDRs) [125].

Figure 3.5: Mutated KRas at position 12 from Glycine to Cysteine
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Figure 3.6: Mutated KRas covalently attached to AMG-510 at position 12

Figure 3.7: Mutated KRas covalently attached to MRTX-849 at position 12

This force field was improvised from the previously established force field

CHARMM36m (C36m), which was itself an improved version of CHARMM36

(C36) [126]. The C36m force field yielded a high-energy barrier in the back-
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bone dihedrals between the poly-proline II region and the helix region in the

Ramachandran plot. Therefore, with modified Grid-based energy correction

map (CMAP) parameters for all the 20 naturally occurring amino acids, the

CHARMM36IDPSFF force field was developed. It is to be noted that, CMAP

method was first used in CHARMM22 to account for improved sampling of

backbone dihedrals [127]. Since, CHARMM36IDPSFF accounted for the back-

bone dihedrals better than the C36m, it was the go to force field for the hybrid

protein system.

3.2.3 Atomistic simulation methods

GROMACS software was used to run the three simulations, and the topologies

were created using the CHARMM36IDPSFF force field, which is specifically

built for proteins having Intrinsically Disordered Regions[125]. After that, each

of them were centered in a dodecahedral box and solvated using the TIP3P wa-

ter model[128]. To mimic the normal physiological environment, the systems

were then neutralised with sodium and chloride ions.

After the systems were prepared, they were subjected to energy minimisation

using the steepest descent algorithm to remove steric clashes. The protein and

bound ligands were first position constrained with a force constant of 1000

kcal mol−2 nm−2 and the solvent was equilibrated. At this stage, the systems

were allowed to go through an NVT equilibration at 300 K using the modi-

fied Berendsen thermostat[94] for 6 ns. The Parrinello-Rahman barostat[97]

was then used to maintain an average pressure of 1 bar on all systems for 7ns.

Throughout the simulations, a time step of 1fs was maintained and the leap-

frog integrator was utilised. The position restrictions were eliminated in the

final simulation and the simulations were run for 1µs each using the NPT pa-
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rameters. Particle Mesh Ewald was used for electrostatic calculations, with a

cubic interpolation of order 4 and a grid spacing of 0.16 for the Fast Fourier

Transform. Periodic boundary conditions were used throughout all the simu-

lations in all directions. After every 10 steps, the neighbour list was updated

using a grid method, with a short-range neighbour list cut-off of 1 nm. LINCS

constraints were applied to all of the bonds.

3.3 Results & Analysis: Comparison of conformational dynamics among

the G12C variants, and the AMG and MRTX drug-bound forms

3.3.1 Finding fluctuating motifs from RMSF analysis

To better capture the fluctuative behaviour as proposed in the literature about

Switch-I and Switch-II, the Root Mean Square Fluctuation of the three systems

was calculated. Also, it proved as a validation of the force field we had cho-

sen, if it was able to capture the disorderdness of the IDRs. The RMSF for all

the systems were analysed as shown below. As can be seen, the RMSF shows

that the region of Switch-I and Switch-II are having very high fluctuations as

compared to all other segments in the protein for all the systems. The other

conclusions that can be drawn from this Figure 3.8 are:

• For the GDP G12C variant, both the switch regions show very high fluc-

tuation in the regime of 0.4-0.6nm.

• For GDP and AMG bound protein, the fluctuation is reduced only in the

Switch-I region.

• The GDP andMRTX bound protein shows reduced fluctuations in the both

the switch regions.
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Figure 3.8: RMSF plot of GDP bound G12C variant, AMG and MRTX drug-bound

Hence, it conclusively shows that MRTX drug is significantly effective in re-

ducing the fluctuation of the switch regions as compared to the GDP bound

G12C variant of KRas.

3.3.2 Quantifying & comparing fluctuation of different IDRs in KRas from RMSD

Once the fluctuation was obtained, to understand their flexibility we have anal-

ysed and compared P-loop, Switch-I and Switch-II’s Root Mean Square Devi-

ation. The blue part indicated in the figure 3.9, represents the non-equilibrium

part of the simulation and they have been ignored for all further analysis.
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Figure 3.9: RMSD plots of GDP bound G12C variant, AMG and MRTX drug-bound

The RMSD for the P-loop, Switch-I and Switch-II of all the IDRs of the three

systems were analysed as shown in the Figure 3.9. As is evident from the figure

3.9, the RMSD fluctuations for the Switch-II region of theMRTX-bound species

is significantly lower than the RMSD fluctuation of the AMG-bound and no

drug-bound G12C-mutated species. The Switch-I fluctuation is also restricted

in one bound to MRTX as compared to the other two species.

3.3.3 Fluctuation-fluctuation correlation at residual level between Switch-I & Switch-II

Inferring from the upper sections that the Switch regions are highly flexible

as compared to the other regions of the protein, it was of interest to see if the

motions of the switch regions are correlated in some way. Therefore, the gmx
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covarmodule ofGROMACS was used to calculate the covariance matrix, which

was indeed used to further calculate the correlation matrix using the theory from

Section 2.5.3.

Figure 3.10: Correlation plots of GDP bound G12C variant, AMG and MRTX drug-bound

Therefore, the covariance matrix of the Cα atoms was constructed and then the

correlation matrix was calculated. The matrix were plotted as shown in the Fig-

ure 3.10.

Here in the Figure 3.10, the blue circles indicate the regions of Switch-I and

Switch-II correlation. Though a prominent anti-correlation can be seen in the

case of both GDP bound G12C variant and AMG-drug bound one, the correla-

tion is seen to be completely diminished in the case of the MRTX drug bound

one. Therefore, it can be concluded that MRTX not only reduces the fluctuation
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of the Switch regions but also diminishes the correlated motion between the two

Switch regions.

3.3.4 Structural investigation in the neighbourhood of switch regions–specifically fo-

cussing on α-2 & α-3

3.3.4.1 Temporal Helicity comparison

The α-2 helix in the KRas protein is a part of the Switch-II region as mentioned

before. This is because, the helix has a very high propensity to fluctuate under

normal conditions and continuously shifts its configuration between an alpha

helix and loop. Therefore, a study was conducted to look upon if different sys-

tems we are studying have different helicity.

Figure 3.11: α-2 helix melting histogram comparison
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For this study, the gmx helix module of GROMACS was used to collect the

time-dependent data and then a frequency-dependent histogram was plotted by

normalizing all the plots with the global maxima of the frequency obtained form

the three data sets. The data were obtained as shown in Figure 3.11.

The more the hydrogen bonds present better stabilized is the helix. As can

seen in the Figure 3.11, the frequency-dependent normalised histogram for α-2

helix for GDP-bound G12C variant and the AMG-drug bound protein mostly

stays around the 3 to 4 hydrogen bonds during the simulation. However, for the

MRTX drug bound one, the peak lies around 5 to 6 hydrogen bonds. Therefore,

it can be concluded that Adagrasib successfully inhibits the melting of the helix

as compared to the other two. And this might be one of the reason for which

MRTX inhibits the fluctuation of the Switch-II region as shown in the RMSF

Figure 3.8.

3.3.4.2 Dihedral Analysis

The α-2-α-3 pocket is the main binding pocket of the drugs AMG and MRTX.

Therefore, the dihedral angle formed these two loops were analysed so as to see

if the drug-binding event has any effect on the bending of the two loops towards

each other.

Therefore, the frequency-dependent histogram was plotted for all the three

species as shown in the Figure 3.12. As can be seen in the Figure, both the

G12C variant and AMG-bound KRas show bimodal distribution which ranges

from 50o to 148o, having peaks at around 80o and 110o. Whereas for theMRTX-

bound KRas, only a unimodal distribution is evident which is quite restricted

between 70o to 118o peaking at around 96o. This also indicates that MRTX

heavily restricts the fluctuation of the Switch-II’s α-2 helix and keeps it close
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to the α-3 helix, unlike the heavy fluctuation seen in case of G12C variant and

AMG-bound KRas.

Figure 3.12: Frequency-dependent histograms of GDP bound G12C variant, AMG and MRTX
drug-bound

3.3.5 Exploration of drug-mediated interaction through contact map analysis

Contact maps are a very good visualization tool for visualizing domain-domain

interactions that are present in a biomolecular system. For this study, frequency

dependent contact maps were used so as to analyse the major long-timescale in-

teractions present between a protein segment and the associated ligand.

For our two drug systems, the drugs lie very close to the Switch-II and α-3

regions. Therefore, the analysis was performed independently to all the com-

binations possible. As can be seen, in Figure 3.13 and Figure 3.14, the MRTX

drug makes a significant number of more sustained contacts compared to AMG.

The contacts formed are mainly forming through the hydrogen bonds and hy-
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Figure 3.13: Contact map of Switch-II loop region with drugs

Figure 3.14: Contact map of Switch-II’s α-2 region with drugs

Figure 3.15: Contact map of α-3 helix with drugs
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drophobic contacts. Furthermore, it should be noted that there is no significant

difference between the contacts formed between α-3 and the drugs, as shown in

Figure 3.15. This gives the conclusion that MRTX is able to formmore contacts

with the Switch-II region, as opposed to AMG, and hence able to highly reduce

its fluctuation as confirmed through the RMSF and RMSD plots.

3.4 Conclusion

From all these studies on the oncogenic variant of the KRas and its drug-bound

states, it can concluded that:

• The two switch regions are highly disordered as compared to the other

parts of the protein.

• MRTX-bound variant restricts the motion of both the Switch-I and Switch-

II as compared to the G12C oncogenic variant and the AMG-bound one.

• MRTX-bound variant completely leads to the loss of the anti-correlation

present in both the G12C-mutated and AMG-bound structures.

• MRTX-drug heavily restricts the fluctuation of the Switch-II’s α-2 helix,

by significantly restricting the α-2-α-3 dihedral angle.

• The maximal contacts formed are in the MRTX-bound one are mainly

through the Hydrogen bonds and Hydrophobic interactions.
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4 Exploring conformational landscape of drug-bound and

unbound forms of KRAS: Deducing switch-mediated kick-

out mechanism

4.1 Introduction

Under the general working mechanism of KRas, the GDP-GTP exchange

process is catalysed by the protein called Guanine Exchange Factor (GEF). The

GEF belongs to the SOS (Son of Sevenless) family of proteins.

Under physiological conditions when KRas is in its inactive state, the high-

affinity binding of the GDP to the protein is due to the interaction of the

phosphates of GDP with the P-loop’s K16 (Lysine-16) and the Mg2+ ion. But

GEF binding, leads to the pushing in of the Switch-II towards the P-loop which

indeed leads to the pushing out of the Mg2+ ion from its initial position and

hence looses its interaction with the GDP. The residue A59 (Alanine-59) plays

an important role in the above process. Therefore, since the interactions of the

GDP is weakened and Switch-II position is pushed inside, the P-loop reorients

and the K16’s amino groups start forming interaction with the carboxylates

of switch-II residues, i.e. D57 (Aspartic Acid-57) / E62 (Glutamic Acid-62).

This mechanism of Pull-in of the Switch-II lets the P-loop to loose interaction

with the GDP and and let the GDP to float in the cavity formed by Switch-I.

Following this, the Switch-I is pulled apart by the GEF, leading to the flying out

of the GDP from that cavity and letting the GTP in. Therefore, this mechanism

is known as the Kick-Out mechanism or the Push-pull mechanism since the

pushing of Switch-II and pulling of Switch-I is observed [80]. This mechanism

has been schematically depicted in the Figure 4.1.
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Figure 4.1: Schematic diagram of KRas-GEF Interaction scheme showing Kick-Out; adapted
from Ref. [80]

Figure 4.2: Binding and Unbinding mechanism of KRas-GEF interaction (PDB ID: 7KFZ)
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Hence, our interest was to explore that if KRas can intrinsically reach this push-

pull configuration in its energy landscape and how accessible it is in its drug-

bound form. This could indicate an alternative pathway through which drugs

might inhibit the GTP binding of mutated KRas.

4.2 Methodology: Well-tempered metadynamics simulation

Along with the systems described in Chapter 3, another extra system was incor-

porated here, which is the Wild-type KRas, so as to explore the conformation

states visited by this native KRas system. Similar to the general MD protocol

for all the three species described in the Section 3.2, all the steps were done

exactly similar for all the four systems here, till the NPT equilibration. Once

the systems were equilibrated, the simulation were patched withPLUMED[129,

130, 131], for the performance of the well-tempered 2D-metadynamics through

Langevin dynamics. Also, the previously chosen distance order parameter was

an 1D-order parameter and was unable to calculate the multidimensional free

energy surface properly. Therefore, a collective variable such as RMSD was

chosen to take care of it. Hence, the order parameters for this run were cho-

sen as “RMSD of Switch-I” and “RMSD of Switch-II”. For the Well-tempered

metadynamics, the rate of hill deposition was set at 500, height and width of

the Gaussian hills were set at 0.1 and 0.001 respectively, and order parameter

bias factor was given a value of 15. The simulations were run through 200ns at

the temperature 310K using grids for computational optimization. And the data

were analysed to generate the free energy surface using the sum_hills module

of PLUMED.
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4.3 Results

4.3.1 Conformational states of Wild-type (WT) and G12C oncogenic variant of KRas

For the Wild-type (WT) variant of KRas, as can be seen from the Figure 4.3

there exists a single stable state. Also there is very less heterogeneity present

in the structural landscape, which ranges from 0.12nm to 0.24nm for Switch-I

RMSD, and from 0.23nm to 0.33nm for Switch-II RMSD. This region we pro-

pose to be the GDP-GTP exchange state. For the Figure 4.3 to 4.6, the red,

Figure 4.3: Well-tempered Metadynamics plot of WT KRas along with its most stable state

Figure 4.4: Well-tempered Metadynamics plot of G12C-mutated KRas along with its most sta-
ble state

65



yellow and cyan represent the P-loop, Switch-I and Switch-II, respectively.

However, for the G12C-mutated oncogenic variant, there exists a different

global minima as compared to the WT. This minima shows more deviation in

the Switch-I and less in the Switch-II as compared to the WT. Nevertheless, it

has a small population in the single state as WT as well. Also, it shows more

heterogeneity than WT. Hence, we can propose that this variant has a small

propensity for the GDP-GTP exchange to happen, but has a different major sta-

ble state, which might be leading to the oncogenicity.

4.3.2 Comparison of conformational states of the oncogenic variant & the drug-bound

forms of KRas

Figure 4.5: Well-tempered Metadynamics plot of AMG-bound mutated KRas along with its
most stable states
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As can be seen in the Figure 4.5, here for the AMG-bound mutated KRas, there

exists very large heterogeneity in the energy landscape. There are two stable

states as can be inferred from the landscape. However, the WT state still exists

with a small population which indicates that GDP-GTP exchange pathway is

still open even in the AMG bound state. This might be a reason why AMG is

not a potent drug in inhibiting the mutated KRas’s oncogenicity.

Figure 4.6: Well-tempered Metadynamics plot of MRTX-bound mutated KRas along with its
most stable states

However, in the Figure 4.6, MRTX completely restricts the fluctuations in the

Switch-II region of KRas in a controlled manner and has two stable states in

its energy landscape. This also validates the conclusion made in the previous

molecular dynamics data proposed in the previous chapter. Moreover, the WT

state population doesn’t exist. Therefore, it can be inferred that MRTX com-
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pletely restricts the GDP-GTP exchange pathway.

4.4 Conclusion

From all these Metadynamics studies, it can be concluded that:

• For the WT KRas, there exists a single stable state, that we propose is the

state that favours the GDP-GTP exchange.

• G12C mutated KRas, shows heterogeneity and also exhibits a small pop-

ulation that favours GDP-GTP exchange.

• AMG-bound one is unable to protect KRas from the GDP-GTP exchange

state and also exhibits high heterogeneity in its energy landscape. How-

ever, MRTX is successful in restricting the protein from visiting the GDP-

GTP exchange favourable state.

• Restriction of the Switch-II fluctuation is necessary for inhibiting the onco-

genicity exhibited by KRas, as in the case for MRTX-bound one. This can

be noted for any future drug that needs to be designed in case the current

drug is no more potent, and the oncogenic protein becomes drug resistant.
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Future Aspects

• More free energy enhanced sampling simulations needs to be performed

for quantifying the energy basins and better inferring the thermodynamic

data.

• Protein docking experiments can be performed to study the downstream

signalling interaction of KRas.

• The allosteric affect of other G12 mutations (G12V, G12D, G12A) to the

switch regions needs to be chalked out.
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